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In this work, we derive the equations of motion governing the dynamics of spin-F spinor condensates. We
pursue a description based on standard physical variables �total density and superfluid velocity�, alongside 2F
“spin nodes:” unit vectors that describe the spin-F state and also exhibit the point-group symmetry of a spinor
condensate’s mean-field ground state. In the first part of our analysis, we derive the hydrodynamic equations of
motion, which consist of a mass continuity equation, 2F Landau-Lifshitz equations for the spin nodes, and a
modified Euler equation. In particular, we provide a generalization of the Mermin-Ho relation to spin one and
find an analytic solution for the skyrmion texture in the incompressible regime of a spin-half condensate. In the
second part, we study the linearized dynamics of spinor condensates. We provide a general method to linearize
the equations of motion based on the symmetry of the mean-field ground state using the local stereographic
projection of the spin nodes. We also provide a simple construction to extract the collective modes from
symmetry considerations alone akin to the analysis of vibrational excitations of polyatomic molecules. Finally,
we present a mapping between the spin-wave modes, and the wave functions of electrons in atoms, where the
spherical symmetry is degraded by a crystal field. These results demonstrate the beautiful geometrical structure
that underlies the dynamics of spinor condensates.
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I. INTRODUCTION

A central theme of contemporary atomic physics experi-
ment is the dynamics of Bose-Einstein condensates and other
correlated atomic gases. Of particular interest are mixtures of
several species such as Fermi-Bose mixtures1–3 and bosonic
gases with an internal spin degrees of freedom, i.e., spinor
condensates. Spin-one and spin-two spinor condensates have
been realized as particular hyperfine states of alkali atoms.4–6

In addition the trapping and cooling of 52Cr atoms have led
to the realization of a spin-three condensate.7 On the theoret-
ical front, since the initial work of Ohmi and Machida,8 and
Ho9 numerous interesting works have followed that discuss
ground states, dynamics, and topological excitations of such
systems �see, for instance, a review in Ref. 10�.

Recent theoretical interests in spinor condensates have fo-
cused on topics such as dynamics near the insulating
transition,11 metastable decay of currents,12 spin knots,13 and
the anomalous Hall effect.14 One particularly important as-
pect of spinor condensates is their free dynamics under a
time-dependent Hamiltonian, about ground or metastable
states. This aspect was the center of several experimental15–20

and theoretical21–27 studies. These investigations, so far, were
mostly confined to the simplest case of spin-one condensates.
On the other hand, the wealth and intricacy of spinor con-
densates increases dramatically with increasing spins. For
instance, the phase diagram of spin-two and spin-three con-
densates consists of four and ten possible mean-field phases,
respectively.8,9,28–31 A feature which makes these systems
even more interesting is that the ground states exhibit a high
degree of symmetry in its spin state which is isomorphic to
lattice point groups.32–34 In this paper we seek to utilize this
symmetry in the study of the free dynamics of spinor con-
densates.

Recently, it was shown within mean-field theory that the
ground states of spinor condensates exhibit a high degree of
symmetry. This symmetry is opaque in the standard spinor
description of the condensate. On the other hand, the sym-
metry is transparent in the so-called reciprocal-state repre-
sentation. Here, one uses the fact that the mean-field ground
state of a spin-F condensate can be described by 2F
coherent-spin states orthogonal to it. Each one of these so-
called reciprocal states is fully spin polarized, pointing along
some direction on the unit sphere. Since there are 2F such
reciprocal states, the ground state is uniquely described �up
to an overall phase� in terms of the 2F points on the unit
sphere.32 For typical spinor-condensate Hamiltonians, these
points �or antipodes which we denote spin nodes, see Sec.
III�, form highly symmetric configurations. For instance, an
F=2 condensate has a cyclic phase, where the spin nodes are
arranged in a tetrahedron, as well as a square phase.

The spin-node description of the ground states of spinor
condensates provides an intuitive geometrical description of
the state of the condensate. In addition, it provides a param-
etrization which readily exhibits the hidden point-group sym-
metries of the state. Despite its appeal, however, this param-
etrization has not been used to describe the dynamics of
spinor condensates. Our goal in this paper is to provide a
complete description of the hydrodynamics of spinor con-
densates in terms of such spin nodes.

The first aspect we consider is the continuum hydrody-
namics of spinor condensates �Secs. III–VI�. Our description
is hydrodynamic in the sense that it focuses on the low-
energy dynamics of the system associated with locally con-
served quantities or with the slow elastic deformation of
spontaneously broken degrees of freedom. Here we derive
such a description using the density, superfluid velocity, and
the spin nodes �the 2F vectors on the unit sphere� as our
basic degrees of freedom. In addition to the Euler equations,
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which describe mass, momentum, and energy conservation,
we obtain 2F Landau-Lifshitz equations for the dynamics of
the spin nodes. Furthermore, our derivation gives a natural
generalization of the Mermin-Ho relation which connects the
vorticity in a ferromagnetic spinor condensate with the
Pontryagin density of the order parameter.

The treatment of the spin degrees of freedom in this part
is exact and it accounts for the full geometrical structure of
the hydrodynamics of spinor condensates. But the precision
of the hydrodynamic description here comes at a price: this
formalism becomes increasingly complex as the spin F
grows, and, for large F, the analysis of its exact form be-
comes impractical. Nevertheless, the equations derived here
even for large F become quite useful in their linearized form.

In the remainder of the paper we show how linearizing the
equations of motion about mean-field solutions elucidate the
low-energy properties of spinor condensates with arbitrary
spin in a powerful and elegant way. We consider the general
2F spin-node description of the low-lying spin-wave excita-
tions near the mean-field ground state �Secs. VII and VIII�.
We derive the linearized equations of motion for the spin-
node locations, which allows us to extract the small oscilla-
tion spectrum from symmetry alone, in a fashion resembling
the vibrational-mode calculation for polyatomic
molecules,35,36 though slightly more complicated. Using this
method we are able to give simple expressions for the vibra-
tion eigenmodes and energy spectrum. In addition, we derive
a correspondence between the low-lying excitations of the
spinor condensates and atomic orbitals subject to rotational
symmetry due to crystal fields, which reflect the symmetry of
the spinor-condensate ground state.

The paper is organized as follows. Section II provides
general background on spinor condensates and reviews re-
cent progress on the hydrodynamic description of ferromag-
netic condensates.37 In Sec. III we present the spin-node rep-
resentation of spinor-condensate degrees of freedom and
derive several useful identities within this formalism. In Sec.
IV we proceed to obtain hydrodynamic equations for the
spin-half condensate, using the spin-node formalism, and
find an analytic solution for a skyrmion configuration. In
Secs. V and VI, we derive the general hydrodynamic equa-
tions of motion for the spin-one condensate, and then for an
arbitrary spin-F condensate, which includes a generalization
of the Mermin-Ho relation.38 In the second part of the paper
we concentrate on small deviations from the mean-field
ground states. In Sec. VII we derive the linearized equations
of motion about the mean-field configuration in terms of the
spin-node formalism. Finally, in Sec. VIII we demonstrate
how to use symmetry arguments to compute the spin-wave
excitations and give a prescription to obtain closed-form ex-
pressions for both eigenmodes and eigenenergies of the low-
lying spin waves.

II. BACKGROUND

A. Hydrodynamics of spinless BECs

For a single-component Bose-Einstein condensate �BEC�,
it is natural to expect a simple hydrodynamic description in
terms of density and flow velocity. We take the time-

dependent Gross-Pitaevskii equation �GPE� as our starting
point

i�t� = −
1

2
�2� + g�� , �1�

where �=��ei� is the macroscopic wave function and �
= ���2 is the density �here and after for notational simplicity
we will use scaled units�. This equation can be recast into the
form of local momentum and mass conservation laws, with
the superfluid velocity v=��, one obtains39

�t� = − ���v�; Dtv = − ��g� −
�2��

2��
� , �2�

where Dt=�t+v ·� is the material derivative. The first of
these is the mass continuity equation while the second is the
Euler equation for a fluid, where a quantum pressure term
appears.

B. The hydrodynamics of ferromagnetic BECs and the
Mermin-Ho relation

In a series of recent experiments, the quench dynamics of
a ferromagnetic spin-one condensate was explored.17–20

These experiments motivated Lamacraft to develop a hydro-
dynamic framework for the ferromagnetic BEC in terms of
the superfluid velocity and the director of its ferromagnetic
order n.37 This description is particularly illuminating when
considering the instabilities of the system. This problem was
also theoretically considered in Refs. 21–27.

The GP Lagrangian density describing such a ferromag-
netic spinor condensate is given by

L = i�a
��t�a −

1

2
� �a

� · ��a −
1

2
g�2 −

1

2
c2�2m2, �3�

where a=−F , . . . ,F is summed over all Fz eigenstates, and

� = �
a

�a
��a m =

1

�
�
ab

�a
�Fab�b, �4�

where Fab is the spin-F matrix. Lamacraft’s approach as-
sumed an incompressible liquid with a wavefunction re-
stricted to the ferromagnetic phase �assuming large g and c2�

�a = ei��a�n� , �5�

where �a�n� is the highest eigenstate of n ·F. Note that for
the ferromagnetic state we have m=n �while for the polar
state �m�=0�. A substitution of this wavefunction into Eq. �3�
yielded the following set of hydrodynamic equations37

� · v = 0,

Dtn =
1

2
n � �2n . �6�

Once the density is eliminated, we notice that the spin dy-
namics are given by a Landau-Lifshitz equation with the
material derivative Dt=�t+v ·�. In addition, the vorticity is
related to the Pontryagin density by
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� � v =
F

2
���	n���n� � �n	� . �7�

This identity is widely known as the Mermin-Ho relation.9,38

Among other things, such a relation has important conse-
quences for the topological defects in ferromagnetic
condensates.9,40–42 Such hydrodynamic equations were also
derived in Ref. 43 to describe magnetic properties of
quantum-hall systems.

Making use of this simple description, Lamacraft showed
that the helical configuration of the ferromagnetic
condensate19 is unstable. In general, it is clear that such a
geometric description simplifies, at least conceptually, the
analysis of spinor-condensate dynamics.

C. General magnetic ground state of spinor condensates and
the reciprocal-state representation

A general spin-F spinor condensate is described by a mac-
roscopic wave function with 2F+1 complex components �a
�a=−F , . . . ,F�. When quantum fluctuations are unimportant,
the condensate dynamics is described by the time-dependent
Gross-Pitaevskii equation

i�t�a = −
1

2
�2�a +

�Vint

��a
� , �8�

where Vint is the spin-dependent interaction energy. The in-
teraction energy is given by the set of parameters gS with S
=0,2 , . . . ,2F describing the two-particle interaction strength
in the S total angular-momentum channel

Vint =
1

2�
S,m

gS�a
��b

��ab�Sm	�Sm�a�b�	�a��b�. �9�

In the above, �ab �Sm	 are Clebsch-Gordan coefficients. Note
that this expression can also be written as the expectation
value of an operator

Vint =
1

2 1���2���Vint��	2��	1, �10�

where

Vint = �
S,m

gS�Sm	�Sm� = �
S

gSPS. �11�

In this expression, PS projects into the total-spin S scattering
channel.

The classical �mean-field� ground states occur for uniform
condensates which minimize Eq. �9� for fixed density �. This
minimization was carried out for F=1,8,9 F=2,28 and F=3
�Refs. 30 and 31� yielding a multitude of magnetic phases,
which minimize Vint in different regions of 
gS� parameter
space, only one of which �for every F� is ferromagnetic.

Indeed, quite generally, a spin-F spinor condensate may
exhibit several flavors of paramagnetic rather than ferromag-
netic behavior in its ground state. For example, a spin-one
condensate may exhibit the so-called nematic phase, where
�1=�−1=0, and �0=1. The expectation value of the magne-
tization for such a state is clearly zero along any direction,
�F ·n	=0. But in the absence of a ferromagnetic director, n,

can we still describe a spinor condensate’s magnetic state
geometrically?

Such a geometrical method was put forward in Ref. 32
based on the use of spin-coherent states. A spin-coherent
state ��n	 is the eigenvector of the operator F ·n with the
largest eigenvalue. The method of Refs. 32 relies on finding
the set of 2F spin-coherent states, 
��ni

	�i=1
2F , which are

orthogonal to the ground state of a uniform condensate

��ni
��GS	 = 0. �12�

The 2F states ��ni
	 provide �up to an overall phase� a unique

description of the magnetic spin state of the condensate at
each point in space. Such reciprocal spinors give a natural
generalization of the ferromagnetic director to the case of
paramagnetic condensates. Instead of the geometrically
opaque 2F+1 complex numbers �a, it allows a description of
the magnetic state in terms of 2F unit vectors, ni, or points
on the unit sphere.

In addition to its geometrical transparency, such a descrip-
tion also reveals the highly symmetric nature of the mean-
field ground states. All the paramagnetic phases found so far
correspond to a spin-node configuration which is invariant
under point symmetry-group operations and sometimes un-
der a larger symmetry. The nematic phase of the F=1 con-
densate, for instance, is described by two antipodal spin
nodes. F=2 condensates can exhibit a nematic phase as well
but also a phase in which the spin nodes are the vertices of a
square and a phase with the spin nodes at the vertices of a
tetrahedron. Such phases are illustrated in Fig. 1.44

The reciprocal-spinor description was so far only utilized
to discuss equilibrium properties of spinor condensates. The
remarkable geometrical properties and hidden symmetries of
the mean-field ground state, however, provide ample motiva-
tion for employing the spin nodes to obtain a complete de-
scription of the dynamics of spinor condensates. In the fol-
lowing sections we will develop the tools necessary for such
a description and use them to derive both a hydrodynamic
description as well as small oscillation dynamics near mean-
field ground states.

III. SPIN-NODE DESCRIPTION OF SPIN-F MAGNETIC
STATES

The reciprocal-spinor states so far define the spinor con-
densate’s state only implicitly through Eq. �12�. In order to

x4

x2

x2

(1b)

(2b) (2c) (2d)

x2

(1a)

(2a)

FIG. 1. �Color online� Possible phases for the spin-one and spin-
two condensates. The red dots on the unit sphere correspond to the
unit vectors ni �reciprocal spinors� defined in Eq. �12�. Spin-one
condensates have ferromagnetic �1a� and nematic phases �1b� while
spin-two condensates have ferromagnetic �2a�, uniaxial nematic
�2b�, square biaxial nematic �2c�, and a tetrahedral �2d� phases.
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be able to use these variables directly, we must invert the
relationship, expressing the spinor-condensate Lagrangian
directly in terms of these variables. In order to find this direct
representation, we first separate the wave function into a
piece corresponding to the overall density and phase and a
piece describing the local spin state. We write

�a = �
a, �13�

where 
a is a normalized spin-F spinor

�
a


a
�
a = �
�
	 = 1 �14�

and the superfluid density is

� = ���2. �15�

A. Symmetrized spin-node representation

As discussed above, a spin-F spinor �
	 can be described
by 2F reciprocal states. On the other hand, such a state can
also be described by a fully symmetrized collection of 2F
spin-half states. Each spin-half state can be parametrized in
terms of two coordinates �= �� ,�� on the unit sphere,

��	 = cos��

2
�ei�/2�↑	 + sin��

2
�e−i�/2�↓	 . �16�

In this representation

�
	 =
1

N�


�
��

i=1

2F

� ��
i
	� =

��2F�!
N

��	 , �17�

where N is a normalization constant and the sum over 
 runs
over the �2F�! permutations of the 2F labels for the spin-half
parts.45 In Eq. �17� we also defined ��	 as the �unnormal-
ized� sum over permutations of the tensor product.

The properties of the above formulation are most easily
understood using the Schwinger-boson construction46 �for re-
view, see Ref. 47�. Schwinger bosons provide an easy way to
construct the Hilbert space of a spin-F spinor state. We de-

fine two Schwinger-boson creation operators: â† , b̂†. An â†

boson adds 1/2 to both the total spin, and to Fz, whereas a b̂†

boson adds 1/2 to the total spin, but lowers Fz by half. In this
notation

Ftot =
1

2
�â†â + b̂†b̂�;

Fx =
1

2
�â†b̂ + b̂†â�;

Fy =
1

2i
�â†b̂ − b̂†â�;

Fz =
1

2
�â†â − b̂†b̂� . �18�

A spin-half spinor is written as

��	 = u�↑	 + v�↓	 = �uâ† + vb̂†��0	

with �0	 the Schwinger-boson vacuum. Here, u and v can be
written in terms of the coordinates on the unit sphere as u
=cos�� /2�ei�/2 and v=sin�� /2�e−i�/2.

A symmetrized tensor product of 2F spins within the SB
formalism is simply written as

��	 = ��1 ¯ �2F	 = �
i=1

2F

�uiâ
† + vib̂

†��0	 �19�

with ui and vi parametrized in terms of �i ,�i as shown
above. We refer to this collection of the 2F spin-half states
which construct ��	 as spin nodes.

If we wish to calculate wavefunction overlaps using the
Schwinger Boson formalism, we can use Wick’s theorem to
obtain

���a����b�	 = �0��
i=1

2F

�ui
�a��â + vi

�a��b̂��
j=1

2F

�uj
�b�â† + v j

�b�b̂†��0	

= �


�

�
i=1

2F

�0��ui
�a��â + vi

�a��b̂��u
i

�b�â† + v
i

�b�b̂†��0	

= �


�

�
i=1

2F

��i
�a���
i

�b�	 , �20�

where 
 is a permutation of the 2F indices that mark the
spin-half parts. This result could have also been obtained
directly from Eq. �17�. Nevertheless, we find it instructive to
demonstrate the simple Schwinger-boson construction to ob-
tain the symmetrized states.

B. Connection between spin nodes and reciprocal spinors

Since the symmetrized spin-node representation can be
used to express any spin state directly, it makes a grossly
overcomplete basis. Nevertheless, its usefulness arises since
it perfectly reflects the spin-nodes formalism of the spinor-
condensates ground states.32,48 In the following we will in-
troduce the necessary new notation for the spin-node formal-
ism; we summarize the new notation in Appendix A.

It is simple to see that a spin-coherent state can be written
in terms of Schwinger-boson states as

����2F	 = �uâ† + vb̂†�2F�0	 = �� ¯ �	 . �21�

Thus a coherent state can be thought of as 2F spin nodes
pointing in the same direction. �For a summary of the nota-
tion see Appendix A�

As described in Sec. II C, a reciprocal spinor is a coherent
state ���r�2F	= ��r¯�r	 orthogonal to a given spinor ��	.
Using the construction in terms of symmetrized spin nodes,
we can write an equation to determine the reciprocal spinors
for a particular state ��	= ��1¯�2F	
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���r�2F��	 = �2F� ! �
i=1

2F

��r��i	 = 0. �22�

This equation has 2F solutions, each corresponding to a dif-
ferent term in the product vanishing. That is, the ith solution
of Eq. �22� is

���r�2F	 = ���i
t�2F	 = ��i

t
¯ �i

t	 , �23�

where

��i
t	 = �− vi

�â† + ui
�b̂†��0	 �24�

is the time-reversed spinor of ��i	 with �i
t=�−�i and �i

t

=�i+�. Here we use the fact that a spin-half spinor is or-
thogonal to its time-reversed counterpart.

Finally, we note that the direction of the spin-half spinor
��i

t	 is opposite to that of ��i	. Explicitly, we have

��i
t�F��i

t	 = − ��i�F��i	 . �25�

One therefore sees that the set of reciprocal spinors is noth-
ing more than the spin nodes pointing in the opposite direc-
tion. For example, given the spin-node representation of a
particular spinor: 
ni�1

2F, the reciprocal-spinor representation
is simply 
−ni�1

2F. From this point on we reserve the symbol
ni for spin nodes �and not reciprocal spinors�. Furthermore,
our analysis will be in terms of spin nodes alone.

C. Time derivatives of spinors and spin nodes

As stated above, our goal in this paper is to extract the
dynamics in terms of individual spin nodes ��i	. In order to
do so, we must be able to isolate the dynamics of each spin
node within ��	. Consider the time derivative of ��	 which
will appear in the GPE. We can express it as a sum of terms
in which the time derivative operates on individual spin
nodes

�t��	 = ��t�1�2. . .	 + ��1�t�2. . .	 + . . . . �26�

The trick that allows us to isolate individual spin nodes con-
sists of taking the inner product of �t��	 with the ith recip-
rocal state of ��	, which is ���i

t�2F	. All terms which do not
involve a time derivative of ��i	 identically vanish and we
are left with the single term

���i
t�2F��t��	 = �2F� ! ��i

t��t�i	�
j=1

j�i

2F

��i
t�� j	 . �27�

We will make extensive use of this method for isolating the
dynamics of individual spin nodes in the following sections.

D. Geometrical parametrization of the spin-half components:
Moving from 
Ωi‹ to ni

All results above were concerned with breaking a spin-F
spinor into its 2F spin-half parts, ��i	, and with the corre-
spondence between these spin-half parts and the reciprocal
coherent states. We would like, however, to understand the
dynamics of spinor condensates not only in terms of the

spinors, ��i	, but also in terms of the unit vectors that de-
scribe them, ni, where ��i	 is highest value eigenvector of
F ·ni.

The first step in finding the equations of motion in terms
of the spin directors ni, is to establish an orthonormal triad
�ex ,ey ,n� that parameterizes the space on S2 in the vicinity of
ni. In the following we will only consider a single spin-half
part, and therefore we drop the index i.

The first element of the triad is n itself

n = 2���F��	 , �28�

where F is the spin operator, acting in the spin-half Hilbert
space. To complete the triad, we again use the time-reversed
spin-half ket, ��t	, where ��t ��	=0. With this, we can con-
struct states pointing in the “x” and “y” directions with re-
spect to n as

��x	 =
1
�2

���	 + ��t	� , �29�

��y	 =
1
�2

���	 + i��t	� . �30�

These states allow us to complete the orthonormal triad by
defining

ex = 2��x�F��x	, ey = 2��y�F��y	 . �31�

From these we can construct

e� = ex � iey . �32�

It is useful to note that F ·e� act as raising and lowering
operators. That is,

F · e+��	 = 0; F · e+��t	 = ��	 �33�

with similar relations holding for lowering operators.
Note that there is an ambiguity in such coordinate systems

since ex and ey can together be rotated about n which corre-
sponds to the gauge choice for the spinors. That is, the gauge
of a spinor can be changed by ��	→ei���	 without changing
its direction n. In general, quantities which are gauge invari-
ant cannot depend on the parameterization of the spin and
will only involve the unit vectors ni. We will adhere to con-
vention of the spin-half state introduced in Eq. �16�. Here the
gauge is fixed by requiring that the product of the spin-up
and spin-down components of the spinor is real. In this
gauge choice it is easy to see that

ex = �̂ ey = �̂ , �34�

where �̂ and �̂ are unit vectors from the spherical coordinate
system.

To complete the discussion, we make two observations
that will simplify the following analysis. First, we express F
in the basis of our triad as

F = �F · n�n + �F · ex�ex + �F · ey�ey

= �F · n�n +
1

2
�F · e+�e− +

1

2
�F · e−�e+. �35�

In addition we note that we can use the spin operator F as a
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projection onto ��	 and its time-reversed partner ��t	 by

��	��� =
1

2
+ n · F �36�

and

��t	��t� =
1

2
− n · F . �37�

E. Derivatives of spin-half spinors in terms of the triad
(ex , ey ,n)

The relations derived and recalled in the previous sections
allow us to also write derivatives of spinors in terms of vec-
tor quantities and their derivatives. The terms that we will
encounter arise from terms such as the isolated time deriva-
tives in Eq. �27�. Let us now find this decomposition in terms
of the triad �ex ,ey ,n� and its differential forms.

Our goal is thus to find

a� = i������	 and ��t����	 �38�

in terms of �ex ,ey ,n� and their derivatives. We define a� in
this form for reasons that will become clear later. The first
object in Eq. �38� can be found by considering the quantity

�����t�e− · F��	� = ��1 = 0. �39�

Allowing the derivative to operate on the bra, the ket, and the
vector e−, we find

����t��t	 + ������	 = −
1

2
e+ · ��e− �40�

On the left-hand side we used the facts that F ·e−��	= ��t	
and ��t�F ·e−= ���. On the right-hand side we used the fact
that ��t�F��	= 1

2e+ which can be verified from Eq. �35�. It is
easy to verify that

����t��t	 = ������	 ,

ex · ��ey = − ey · ��ex

from which we find

a� =
1

2
ey · ��ex �41�

which is the desired result.
To obtain ��t ����	 we use a similar trick. Starting with

0 = ��t��t	��t��	 = ��t�
1

2
− n · F��	 �42�

we find

�����t�
1

2
− n · F��	� = 0. �43�

As before, allowing the differentiation to act on the bra, the
ket, and n results in

��t����	 = ��t����n� · F��	 , �44�

where the term with ����t� vanishes since � 1
2 −n ·F���	=0.

Now, using again the decomposition in Eq. �35�, we readily
find

��t����	 =
1

2
e+ · ��n . �45�

This concludes all the tools we will need for our analysis
below. We have found how to directly write a spin-F spinor
in terms of its spin nodes, and extract terms having to do
with individual spin nodes out of sums arising, e.g., from
differentiation. Furthermore we translated the spin-half rep-
resentation of ��i	 to a set of 2F triad bases �eix ,eiy ,ni�
which will allow us to parametrize the spin state geometri-
cally. Appendix A summarizes the various notation intro-
duced throughout this section.

IV. HYDRODYNAMICS OF SPIN-HALF CONDENSATES

One of our main goals is to write the exact �mean-field�
equations of motion for a spinor condensate in terms of the
spin nodes and the superfluid velocity and density. In this
section we achieve this goal for spin-half condensates. The
equations of motion can be trivially generalized to general
spin-F condensates restricted to the ferromagnetic state,
when the spinor �
	 is restricted to be a coherent spin state.
In this case the equations of motion for the condensate re-
duce to those we find below.

A. Gross-Pitaevskii Lagrangian

In this section we consider the Gross-Pitaevskii Lagrang-
ian. We begin by writing the Lagrangian in a revealing form,
using the representation of the bosonic field which separates
the spinor order parameter into a product of a density piece
and a spin piece, �a=�
a. The GP Lagrangian is then

L = i�a
��t�a −

1

2
� �a

� · ��a − Vint,

=i���t� + �at −
1

2
��− i � − a���2

−
1

2
�� − Vint, �46�

where Vint is the spin-related interaction and �= ���2 with � a
complex field. Eq. �46� defines the spin vector potential

at � i�
��t
	; a � i�
��
	 �47�

and the quantity

� � ���
���
	 − �
���
	���
�
	 . �48�

An interesting observation is that the quantity � for a general
spin F=N /2 can be identified with the CPN model from
quantum-field theory.49 Notice that there is a U�1� gauge
freedom in the density-spin decomposition
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� → ei��, �
	 → e−i��
	 ,

where � is implicitly summed over. The quantity �, how-
ever, is gauge independent. We make a gauge choice when
we write the normalized �
	 as in Eq. �17� with ��	 written
as Eq. �19�. This U�1� gauge freedom is also reflected in an
ambiguity in the choice of the triad arising from the spin-half
parts of �
	� ��	 since for each spin part ex and ey can to-
gether be rotated about n. The choice of a particular triad is
set by the gauge choice. In general, quantities which are
gauge invariant cannot depend on the parametrization of the
spin and will only involve the unit vectors ni. The vector
potential can be related to the superfluid velocity by

v =
1

�2i
��a

� � �a − �a � �a
�� = �� − a , �49�

where � is the argument of �. So far we have not used the
fact that the spin is F=1 /2.

B. Geometric representation of hydrodynamic quantities

Now that we know the quantities of interest in the spinor
description of the GP Lagrangian, we can translate them to
the hydrodynamic variables of density and magnetization di-
rection. The most important quantity appearing above is the
vector potential as defined in Eq. �47�. Following the discus-
sion in Sec. III D we see that for a spin-half condensate the
vector potential is

a� = i������	 =
1

2
ey · ��ex. �50�

The analogy between a and the vector potential appearing in
the Maxwell equations compels us to consider the antisym-
metric field tensor f��=��a�−��a�. Through a series of ma-
nipulations this can be written purely in terms of n

f�� =
1

2
��ey · ��ex −

1

2
��ey · ��ex =

1

2
���ey · n����ex · n�

−
1

2
���ey · n����ex · n� =

1

2
�ey · ��n��ex · ��n�

−
1

2
�ey · ��n��ex · ��n�

=
1

2
�ey � ex� · ���n � ��n� = −

1

2
n · ���n � ��n� .

�51�

Note that in the above we have repeatedly used the fact that
v ·�v=0 for any unit vector v. The result is the Pontryagin
topological density, which is the object of the celebrated
Mermin-Ho relation for spin-half spinors.38,50

The only remaining term is the gauge-invariant quantity
�, defined in Eq. �48�. For a spin-half state, we find

� = ��������	 − ������	������	 = ������t	��t����	

=
1

4
�e− · ��n��e+ · ��n� =

1

4
���n� · ���n� . �52�

Thus the � term signifies the stiffness of the superfluid with

respect to magnetic gradients �as opposed to simply U�1�
phase gradients�. Also, since we identified � with the La-
grangian density of a CP1 model, we now reaffirm its equiva-
lence with the nonlinear sigma model.49

C. Equations of motion for spin-half condensates

Now that we clarified how the hydrodynamic variables
arise in the GP Lagrangian density, we are ready to approach
the GP equations of motion. In terms of the original vari-
ables, the time-dependent GPE for a spin-half condensate is

i�t�a = −
1

2
�2�a + g��a, �53�

where we note that the interaction energy for this case is

Vint =
1

2
g�2. �54�

Following the substitution �a=�
a, with 
a the entries of the
spin-half spinor �
	, and contraction with �
� we find

i�t� + �at =
1

2
�− i � − a�2� +

1

2
�� + g�� ,

where a�= �at ,a� is the vector potential introduced previ-
ously. Substituting �= fei� and multiplying both sides of the
equation by e−i� gives

i�t f − �t�f + fat =
1

2
�− �2f − if � · v − 2iv · �f + fv2� +

1

2
�f

+ g�f , �55�

where v=��−a. The imaginary part of this gives

�t� = − � · ��v� �56�

which is a mass conservation equation. On the other hand,
taking the real part gives

�t� +
1

2
v2 − at =

1

2

�2f

f
−

1

2
� − g� . �57�

We take the gradient of both sides of this equation �using the
identity ��v2�=2�v ·��v+2v� ���v�� to get

Dtv = e + �v � b� − ��g� +
1

2
� −

�2��

2��
� . �58�

In this we have defined the “electric” and “magnetic” fields e

and b in the usual way from the vector potential. That is,
e�= f�t and b�= ���a��= 1

2���	f�	, with �, � and 	 indicat-
ing space directions, and the f tensor defined below. Also,
note that we have used the material derivative Dt=�t+v ·�.
The “electromagnetic force� appearing in the right-hand side
of the Euler equation is a new feature that is not present in
single-component condensates. This new type of quantum
pressure arises from nonuniform spin textures in spinor con-
densates.

Now we move on to find the equations describing the spin
dynamics. To do this, we contract the GPE with the time-
reversed spinor �
t�. This gives
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i�
t�Dt
	 = − �1

2
�2ia · �
t��
	 + 2

�f

f
· �
t��
	 + �
t��2
	�� .

�59�

Using the spin identities developed in Sec. III the following
relations can be derived �
t ��2
	= 1

2���e+ ·��n� and
���
 �
	�
t ���
	=− 1

4��e+ ·��n. In terms of vectors, the above
equation is then

i

2
e+ · Dtn = −

1

2
�1

2
e+ · �2n +

��f

f
e+ · ��n� �60�

which can be rewritten as

�Dtn =
1

2
�n � ������n�� �61�

which is a Landau-Lifshitz equation.
Thus, collecting everything, we can write down a com-

plete set of equations describing the dynamics of a spin-half
condensate

− �t� = � · ��v� ,

� � v = − b ,

Dtv = e + �v � b� − ��g� +
1

8
���n�2 −

�2��

2��
� ,

�Dtn =
1

2
�n � ������n�� ,

where e and b are related to the spin direction through the
field tensor

f�� =�
0 − ex − ey − ez

ex 0 bz − by

ey − bz 0 bx

ez by − bx 0
� = −

1

2
n · ���n � ��n� .

�62�

It is interesting to compare these results with those obtained
in the incompressible regime Eqs. �6� which were first de-
rived in Ref. 37. The above equations of motion show that
lifting the incompressibility constraint leads to the interesting
appearance of a Lorentz force in the Euler equation where
the effective electric and magnetic fields are given by the
Mermin-Ho relation. In addition, the superfluid density now
enters the Landau-Lifshitz equation.

D. Application: Skyrmion texture

As an example of the efficiency of the above hydrody-
namic equations of motion, let us consider a specific calcu-
lation: skyrmion textures in ferromagnetic condensates. For a
standard U�1� vortex, the superfluid velocity close to the
vortex core diverges as 1 /r. For a scalar condensate, this
causes the superfluid density to be depleted in a small region
of order of the coherence length around the core. This can be

energetically costly if the condensate is near the incompress-
ible regime. On the other hand, this situation can be circum-
vented for a spinor condensate. Consider for example, a two-
component �spin-half� condensate ��↑ ,�↓� and take the ↓
component to have a U�1� vortex. Then around the vortex
core, the density of �↓ can be transferred to the vortex free
�↑ keeping the total density across the vortex core finite.
This is known as the skyrmion configuration which has been
argued to be the relevant topological defect for ferromagnetic
condensates.9,41,51

Let us now derive the analytic time-independent solution
of the equations of motion in the incompressible regime hav-
ing the skyrmion texture shown in Fig. 2. To this end, we
take the incompressible limit37 of the equations of motion for
the spin-half condensate obtained in Sec. IV C. Neglecting z
dependence, these are

� · v = 0, �63�

�xvy − �yvx =
1

2
n · ��xn � �yn� , �64�

Dtn =
1

2
�n � �2n� . �65�

With small modifications, these equations can also be shown
to describe the dynamics of condensates confined to the fer-
romagnetic phase of arbitrary spin in the incompressible re-
gime. Our aim is to find stationary solutions of these equa-
tions having a skyrmion texture given by9,41

n = �sin���cos���,sin���sin���,cos���� , �66�

where � is the azimuthal angle and � is a function of r which
is subject to the boundary conditions ��r=0�=0 and ��r
=R�=�, where R is a distance far from the skyrmion center.
Such a spin configuration is shown in Fig. 2.

Given the form n in Eq. �66�, Eqs. �63� and �64� can be
solved to obtain the velocity profile. One finds

v =
sin2��/2�

r
�̂ . �67�

Note that the boundary condition ��0�=0 suppresses the ve-
locity at the origin which diverges as 1 /r for the standard
U�1� vortex. With the assumption of a static configuration,
Eq. �65� reduces to

FIG. 2. �Color online� A skyrmion configuration corresponding
to Eq. �66�.

BARNETT, PODOLSKY, AND REFAEL PHYSICAL REVIEW B 80, 024420 �2009�

024420-8



v · �n =
1

2
�n � �2n� . �68�

With the expression for v in Eq. �67�, Eq. �68� leads to the
following second-order differential equation for �

r�r
d2�

dr
+

d�

dr
� = sin��� . �69�

With the boundary conditions, the solution of this differential
equation is

��r� = 4 tan−1�r/R� . �70�

This expression, along with the velocity in Eq. �67� and the
spin direction in Eq. �66� constitute an analytic stationary
solution to the equations of motion for the skyrmion configu-
ration.

V. HYDRODYNAMICS OF SPIN-ONE CONDENSATES

A. Geometrical representation of spin-one hydrodynamic
quantities

Now we move on to considering the more complicated
case of the spin-one condensate. The spin-one spinor can be
broken down into its two spin-half components and be writ-
ten as �
	= ��	 /��� ��	 where ��	= ��1�2	, where we
again make use of the large-spin notation defined in Eq. �19�.
The normalization factor for this case is found to be

����	 = ��1��1	��2��2	 + ��1��2	��2��1	 =
3

2
+

1

2
n1 · n2.

�71�

It is also instructive to calculate the spin operator’s expecta-
tion value. To start we can expand into products of spin-half
expectation values

���F��	 = ��1�F��1	 + ��2�F��2	 + ��1��2	��2�F��1	

+ ��2��1	��1�F��2	 . �72�

Then using the identity in Eq. �36�, and the fact that in the
factored expression, F is only acting on spin-half states, we
obtain ���F��	=n1+n2. Dividing this by the normalization,
we get the spin-one expectation value of the magnetization

m = �
�F�
	 = 2
n1 + n2

3 + n1 · n2
. �73�

By similar techniques, the vector potential for the spin-one
case, with some work, can be written as

a� = i�
��
	 =
1

2
e1y · ��e1x +

1

2
e2y · ��e2x

+
1

2

�n2 � n1� · ��n1 + �n1 � n2� · ��n2

3 + n1 · n2
. �74�

One sees that the first two terms in this expression are the
vector potentials from the individual spin-half components
while the final term, which is gauge invariant, describes their
coupling. This expression was previously obtained in Refs.

52 and 53, where a geometrical relation for the Berry phase
of a spin-one spinor was given. The field tensor correspond-
ing to this vector potential can also be similarly computed.
The most simplified form we find is

f�� =
− 2

�3 + n1 · n2�2 �2n1 · ���n1 � ��n1� + 2n2

· ���n2 � ��n2� + �n1 + n2� · ���n1 � ��n2 + ��n2

� ��n1�� . �75�

This is a generalization of the Mermin-Ho relation to the
spin-one case. While its geometrical interpretation is not as
immediate as the spin-half case �which is the Pontryagin
density�, this expression might be of use in computing topo-
logical invariant quantities for spin-one fields. This formula
has a simplified form when locally restricted to mean-field
ground states. For instance for the ferromagnetic sate �n
�n1=n2� the above expression reduces to

f�� = − n · ���n � ��n� . �76�

It is also useful to note that for the nematic state �n�n1=
−n2� the field tensor identically vanishes, f��=0.

Finally, the gauge-invariant quantity � can be worked out
to be

� =
2

�3 + n1 · n2�2 ���n1 · ��n1 + ��n2 · ��n2 + ��n1 · ��n2

+ n1 · n2��n1 · ��n2 − n1 · ��n2n2 · ��n1� . �77�

This is an explicit representation of the CP2 model which can
be viewed as a generalization of the nonlinear sigma model.
Here, too, it is instructive to consider what this expression
reduces to when locally restricting to mean-field ground
states. For the ferromagnetic state, one finds

� =
1

2
��n · ��n . �78�

On the other hand, for the nematic state � reduces to

� =
1

4
��n · ��n . �79�

B. Spin-one condensate equations of motion

We now proceed to do a similar analysis for the spin-one
problem. For this we note that the spin-one GP energy func-
tional has the form

Vint =
1

2
g�2 +

1

2
c2�2m2, �80�

where m is the expectation value of the spin-one operator.
The first two hydrodynamic equations—the mass continuity
equation and the modified Euler equation—are obtained, as
before, by contracting the Gross-Pitaevskii equation with �
�.
The analysis proceeds along similar lines as the spin-half
case. However, for this case we need the generalization of
the Mermin-Ho relation for spin one given in Eq. �75� to
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give the field tensor and thus the effective electric and mag-
netic fields, in addition to the spin-one expressions for � Eq.
�77� and the magnetization m, in Eq. �73�. With these quan-
tities, the first two equations of motion are

�t� = − � · ��v� �81�

and

Dtv = e + �v � b� − ��g� + c2�m2 +
1

2
� −

�2��

2��
� .

�82�

Next, let us discuss the spin dynamical equations. These are
obtained by contracting the GPE with ��1

t �1
t � and ��2

t �2
t �.

As before, this causes several terms to vanish since these
spinors are orthogonal to �
	. Contracting with ��1

t �1
t � gives

the following equation which gives the time derivative of the
first node

ie1+ · Dtn1 = −
1

2
��

12e1+ · ��n1 −
1

2
e1+ · �2n1 + c2�e1+ · m .

�83�

A similar equation for the time derivative of n2 is obtained
by contracting with ��2

t �2
t �. In the above, we have collected

the following terms into the ��
ij parameter

��
ij = 2

�a
��

��
−

���ni · n j�
3 + ni · n j

−
ni · ��n j − ini · �n j � ��n j�

1 − ni · n j

�84�

+ i
�n j � ni� · ��ni + �ni � n j� · ��n j

3 + ni · n j
. �85�

Finally, separating the real and imaginary parts as ��
ij

= ���
ij��+ i���

ij��, we obtain the Landau-Lifshitz equations

�Dt +
1

2
���

12�����n1 =
1

2
n1����

12����n1 + �2n1� − c2�n1m ,

�86�

�Dt +
1

2
���

21�����n2 =
1

2
n2����

21����n2 + �2n2� − c2�n2m .

�87�

This provides a complete set of equations describing the dy-
namics of the spin-one condensate.

VI. HYDRODYNAMICS FOR GENERAL SPIN-F
CONDENSATES

Now that we have considered the hydrodynamic equa-
tions for spin-half and spin-one condensates in detail, in the
following we will consider the general case. The first two
equations of motion, the mass continuity equation, and the
Euler equation are found, as before, to be

�t� = − � · ��v� �88�

and

Dtv = e + �v � b� − ��2Vint

�
+

1

2
� −

�2��

2��
� . �89�

The effective electric and magnetic fields again follow from
the field tensor f�� constructed from a�= i�
 ���
	. For a
general spin, however, such quantities are cumbersome to
express directly in terms of the spin nodes, and we will re-
frain from doing so.

To obtain the Landau-Lifshitz equations, we contract the
GPE with ���i

t�2F�. Doing this gives

i��i
t��t�i	 = − �� log� �

�����	
���i

t����i	 −
1

2
��i

t��2�i	

− ��i
t����i	�

j�i

��i
t���� j	

��i
t�� j	

+
�

�i
�����	 1���i

t�2F�2���Vint��	2��	1. �90�

In this expression, we have used the notation for interaction
energy introduced in Eq. �10�. In addition we have intro-
duced the quantities �i

�i = �2F� ! �
j�i

�� j��i
t	 . �91�

While the first term in Eq. �90�

i��i
t��t�i	 =

i

2
ei+ · �tni

is the inertial term for the spin node ni, the right-hand side,
and the last term of Eq. �90� in particular, should serve the
role of torques, projected onto ei+. As we will show in the
next section, the matrix element of Vint is indeed related to a
derivative with respect to the spin-node coordinates of a
potential-energy function. Specifically

�

�i
�����	 1���i

t�2F�2���Vint��	2��	1 = Aij
−1�����	

��e j+ · �nj
V�
ni��� , �92�

where V�
ni��= �Vint	 is the expectation value of the energy
of a spin configuration with spin nodes 
ni�, and Aij

−1 is a
matrix which projects the torques due to spin node j and the
motion of spin node i. The matrix A and its inverse are de-
fined below in Eq. �121�.

Instead of writing Eq. �90� in terms of vectors as in the
previous sections, we will stop at this point. This equation
provides a natural starting point in the analysis of the linear-
ized equations of motion which will be developed in the
flowing section.

VII. LINEARIZED EQUATIONS OF MOTION FOR
ARBITRARY SPIN-F CONDENSATES

As suggested from the equations of motion of the spin-
one and higher condensates given in the previous sections,
the geometric representation of the equations of motion yield
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rather complicated results. Nevertheless, this formalism re-
gains its appeal when linearized about particular mean-field
ground states. Then the hidden point symmetries of the
ground state become apparent and can be used to describe
the linearized dynamics of a condensate. Below we derive
the small oscillation description of general spinor conden-
sates.

A. Linearized equations of motion from the GPE

Parting ways from the attempt at a general description of
spinor-condensate dynamics, we now turn to the vicinity of a
uniform mean-field ground state. For the ensuing discussion,
we will denote quantities to be evaluated in the mean-field
ground state with overhead bars. For instance, the density
can be written by expanding about the mean-field state as

� = �̄ + �� . �93�

We will first concentrate on the equations describing the den-
sity excitations. Linearizing the equations of motion derived
in Sec. VI leads to the following two equations describing
the density fluctuations:

�t� = − �̄ � · v �94�

and

�tv = − ��−
2V̄int

�̄2 � +
�2�

2�̄
� . �95�

Note that terms describing the spin degrees of freedom �e.g.,
the effective electric and magnetic fields� have completely
dropped out of these equations from linearization. Comput-
ing the excitations from these equations is straightforward
and gives the familiar Bogoliubov mode describing density
fluctuations.

Let us now focus our attention on linearizing the Landau-
Lifshitz equations for general spin written in Eq. �90�. Since
the process of linearization separates the equations for spin
and density fluctuations, to simplify the notation in what fol-
lows, we will scale the density of the uniform state to one,
�0→1. When linearized, the Landau-Lifshitz equations for
general spin become

i��̄i
t��t�i	 = −

1

2
��̄i

t��2�i	

+
1

�i
�����	 1���̄i

t�2F�2���Vint��	2��	1.

�96�

In the above, as before, we have used overhead bars to de-
note quantities evaluated at their mean-field configuration.

To understand the dynamics of Eq. �96� it is useful to
introduce variables to describe small deviations of the spin
nodes from their mean-field values. To this end, by using the
identities established in Sec. III E, we introduce the set of 2F
complex variables 
zi�

zi � ��̄i
t��i	 = ��̄i

t���i	 =
1

2
ei+ · ni =

1

2
ei+ · �ni, �97�

where ni=ni+�ni. Note that in the mean-field states we have
z̄i=0 for each spin node since the vectors ei+ and ni are
orthogonal. This set of variables can be seen to be the local
stereographic projection of ni onto the complex plane for
small displacements and will be very useful in the following
analysis. Moreover, in our gauge convention, zi is given in
terms of displacements along the zenith and azimuthal direc-
tions from the spherical coordinate system

zi = �n · �̂ + i�n · �̂ . �98�

Using these variables, the linearized Landau-Lifshitz equa-
tions become

i�tzi = −
1

2
�2zi +

1���̄i
t�2F�2���Vint��	2��	1

�i
�����	

. �99�

The kinetic pieces in the GP equations are most naturally
described in terms of the original spinor wave function, �a,
and are not simplified by the symmetry of the mean-field
ground states. Nevertheless, Eq. �99� demonstrates that near
mean-field ground states the kinetic terms still acquire a
simple form. Interestingly, the kinetic parts in the spin equa-
tions of motion, Eq. �99�, do not disclose the fact that the
variables 
zi� describe spin-half components of a spin-F
state. This fact is reflected only in the spin-interaction term.
In the following section, we will see that this spin interaction
can be expressed in terms of a derivative with respect to the
z� variables. In particular, the equations of motion will be
shown to be

i�tzi = −
1

2
�2zi + ����	�

j

Āij
−1 �

�zj
�Vint, �100�

where

Aij
−1 �

���i
t�2F��� j

t�2F	
�i

�� j

. �101�

Thus, the spin interaction derives from a sum over “torques”

� j =
�

�zj
�Vint. �102�

B. Perturbative expansion of the spin interaction

An essential element in the behavior of spinor conden-
sates is the spin-interaction term Vint. It is the minimization
of this term that yields the mean-field ground states and its
curvature that determines the normal excitations. These cur-
vatures can be easily and directly extracted in terms of spe-
cific matrix elements, as we show below.

To expand the spin-interaction energy about a mean-field
ground state �denoted with an overhead bar� we first need to
understand how to perturb a spinor about a fixed value. The
following spin-half identity proves to be quite helpful:
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���	 = ��̄	��̄���	 + ��̄t	z , �103�

where we used the resolution of the identity in terms of ��̄	
and its time-reversed partner, and the definition of z

= ��̄t ���	 as in Eq. �97�. Now, if we apply the variation to a
general spin-F spinor ��	= ��	+���	, we obtain to linear
order

���	 = ��	�
i=1

2F

��̄i���i	 + �
i=1

2F

�Ti�	zi, �104�

where �Ti�	 is ��	 with its ith entry time reversed �see Ap-

pendix A�. Since ��̄i ���i	 is imaginary, the first term, which
does not directly depend on z, must drop off when consider-
ing the variations of real quantities. For instance, the first-
order variation of the normalization is

�����	 = �
i=1

2F

����Ti�	zi + �Ti���	zi
�� . �105�

Using Eqs. �104� and �105� one finds

�

�zi

��	
����	

=
P�Ti�	

����	
, �106�

where

P = 1 −
��	���
����	

. �107�

Such an expression is useful in evaluating derivatives of the
spin-interaction energy as in Eq. �100�. In general, deriva-
tives with respect to zi

� will act on bras while derivatives with
respect to zi will act on kets.

We will now establish the equivalence between Eqs. �99�
and �100�. One can use Eq. �106� to evaluate the derivative
of the interaction energy

�

�zj
�Vint =

1�Tj��P12���Vint��	2��	1

����	2 �108�

which is correct to linear order. The subscripts of the bra’s
and ket’s denote how the inner product is to be evaluated: ket
1 �2� is contracted with bra 1 �2�, and signify the state of one
of two interacting particles; similarly, the projection P1 op-
erates only on the degrees of freedom pertaining to particle
“1.” Then using the expression for A−1 and the relation �de-
rived in Appendix B�

P = �
i

���i
t�2F	�Ti��

�i
P �109�

one immediately finds for the last term in Eq. �100�

����	�
j

Āij
−1 �

�zj
�Vint =

1���̄i
t�2F�2���Vint��	2��	1

�i
�����	

�110�

which is the last term in Eq. �99�.

1. Second-order expansion of the interaction energy

Since we are interested in small oscillations about equi-
librium, we would like to express the interaction energy ex-
panded about the mean-field state to quadratic order in the z
variables. This can be formally written as

Vint = V̄int +
1

2�
ij

�2Vint

�zi � zj
zizj + �

ij

�2Vint

�zi
� � zj

zi
�zj , �111�

+
1

2�
ij

�2Vint

�zi
� � zj

�zi
�zj

�, �112�

where the terms involving derivatives of Vint are to be evalu-
ated at the mean-field ground state. We can now use Eq.
�106� to evaluate these derivatives of the interaction energy.
Note that terms where two derivatives act on the same bra or
ket will vanish since

P12���Vint��	2��	1 = 0 �113�

which happens since �i=0 at the minimum of the spin inter-
action, so that 2���Vint��	2��	1� ��	1. We then readily ob-
tain the following quadratic form for the spin-interaction en-

ergy �dropping the V̄int term�:

Vint = �
ij
� 1���2���VintP2�Ti�	2P1�Tj�	1

2����	2 zizj

+
1�Ti��P12���Vint��	2P1�Tj�	1

����	2 zi
�zj

+
1�Ti��P12�Tj��P2Vint��	2��	1

2����	2 zi
�zj

�� . �114�

Here P1,2 is the projection operator which only acts on states
denoted with subscripts 1 or 2, respectively. While the form
above is written symmetrically, following Eq. �113�, only
one projector in needed in Eq. �114�, so P2 can be omitted.

While these results for the spin interaction seem involved,
they are directly expressed in terms of easily constructed
matrix elements evaluated at the mean-field ground state.
Furthermore, these matrix elements obey the point symmetry
of the ground state at hand and thus have stringent con-
straints. Eq. �114� therefore provides us with direct expres-
sions for the matrix elements appearing in the linear spin-
wave expansion of the spinor condensate.

C. The Lagrangian of spinor condensates near equilibrium

The equations of motion can be arrived at by expanding
the spinor-condensate Lagrangian to quadratic order in the z
variables and computing the corresponding Euler-Lagrange
equations. As we saw before, to this order, the density exci-
tations decouple from the spin excitations. Thus, to simplify
the analysis, we will fix the density and scale it to one and
work in the incompressible regime. The Lagrangian for a
spin-F condensate in the incompressible regime is
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L = at −
1

2
��� − a�2 −

1

2
� − Vint, �115�

where Vint is the spin-interaction potential. In expanding this
Lagrangian to second order, we first consider the spin Ber-
ry’s phase contribution

at = i�
��t
	 =
i

2

����t�	 − ��t���	
����	

. �116�

Note that the kets and bras involving time derivatives are
necessarily first order in variation from the mean-field state.
Thus we consider the following quantity expanded to first
order about the ground state

�
��	

����	
=

���	
����	

−
��	

����	2������	� , �117�

=
P���	

����	
− ��	

�����	
����	2 . �118�

Inserting this into the expression for the spin Berry’s phase
�116�, and dropping terms that can be written as total time
derivatives �which do not contribute to the dynamics� one
finds

at = i
���P��t�	

����	
. �119�

We can then insert into Eq. �119� the expressions for the
expansion of ��	 to linear order in the z variables given in
Eq. �104� to directly obtain

at =
i

����	�ij zi
�Āij�tzj , �120�

where

Aij � �Ti��P�Tj�	 �121�

which is the sought-after relation. The proof that A defined
here is in fact the inverse of the expression given in Eq.

�101� is given in Appendix B. The hermitian matrix Ā gives
the canonical commutation relations between the z variables.
To directly compute the matrix elements of A is cumbersome
because each involves a Wick expansion of �2F�! terms. On
the other hand the expression for A−1 given in Eq. �101� is
readily computed since it involves evaluating overlaps be-
tween spin-coherent states. Thus, in practice, to construct the
matrix A it is easiest to first construct A−1 and then compute
its inverse.

Proceeding along very similar lines as above, one can
expand � to second order in the z’s. One finds

� = ���
�P��a
	 �
1

����	�ij ��zi
�Āij��zj . �122�

Finally, we note that the term involving the superfluid veloc-
ity v=��−a in the Lagrangian will not contribute to the
linearized equations of motion. We are now in a position to
vary the Lagrangian Eq. �115� as a function of the z’s to find
the linearized equations of motion. These read

iĀij�tzj = −
1

2
Āij�

2zj + ����	
�V

�zi
� �123�

�repeated indices are summed over�. It is straightforward to
see that this is the same as Eq. �100� which was obtained
directly from linearizing the GPE contracted with time-
reversed coherent states.

Since A is a hermitian matrix, it is diagonalized by a
unitary transformation

A = U�U†, �124�

where � is the diagonal matrix consisting of the eigenvalues
of A. It is therefore convenient to define a new set of w
coordinates as

w = Ū†z . �125�

Note that in terms of these coordinates, the Berry’s phase
assumes a simple diagonal form

at =
1

�����	�i

�̄iwi
��twi. �126�

Furthermore, the equations of motion have the simple form
in these coordinates

i�twi = −
1

2
�2wi +

����	

�̄i

�V

�wi
� . �127�

This has the form of a time-dependent Schrodinger equation
for the wi parameters.

VIII. NORMAL EIGENMODES, SYMMETRY, AND GROUP
THEORY

The most appealing application of the linearized equa-
tions of motion developed in the previous section is to obtain
the normal excitation modes and energies of spinor conden-
sates having a hidden ground-state symmetry. As we show, it
is nearly sufficient to diagonalize the matrix A �defined in
Eq. �101�� in order to obtain the eigenmodes of the spinor
condensate. This can be done solely by using the symmetry
of the mean-field state.

Below we first demonstrate the use of the linearized equa-
tions of motion on the cyclic state without fully utilizing the
symmetry in Sec. VIII A and obtain all eigenmodes and
eigenfrequencies using the variables defined in Sec. VII B 1.
Next, in Sec. VIII B, we demonstrate how from the point
group of the hidden symmetry of the mean-field ground
states, we can compute the normal modes alone �but not
energies�, using the example of the spin-three state where the
spin nodes are arranged at the vertices of a hexagon. Finally,
in Sec. VIII C, we show how to directly construct the vibra-
tional and rotational eigenmodes from spherical harmonics,
by connecting the problem at hand to that of degeneracy
lifting of electronic atomic orbitals. This method circumvents
the arduous group-theory foot work, by using the well-
known properties of atomic orbitals under crystal fields that
break rotational invariance.

The general motivation of the discussion below is that
group-theory analysis can be applied to obtain the normal
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modes in spinor condensates much like the analysis of the
vibrational frequencies of polyatomic molecules.35,36 The
“atoms” �or spin nodes� in our case, however, are confined to
the surface of the unit sphere, and the displacement of each
spin node is a two-dimensional vector �parameterized by the
real and imaginary parts of the z variables�. This constraint
slightly complicates the analysis in comparison with the
treatment of the vibrations of polyatomic molecules. The first
step in a symmetry analysis is to construct the transformation
rules of the two-dimensional displacement vectors under
point-group symmetries. These transformation rules are a re-
ducible representation of the symmetry group and can then
be broken down into its irreducible representations �irreps�.
The modes that transform according to the irreps are the
eigenmodes of the system.

Before we begin the analysis, a note on mode multiplicity
is in order. Naively, one might expect that the procedure in
the previous paragraph will give �2F��2 normal modes due
to the two basis vectors per spin node. This situation would
arise if the transformations we construct transform the 2F
�2 real coordinates, and are therefore 4F large real reduc-
ible representations of the symmetry group, resulting in 4F
modes. While this is the case for real atoms, where the dis-
placement vectors are also associated with conjugate mo-
menta, the spin-nodes displacements do not have indepen-
dent conjugate momenta. From Eqs. �115� and �116� we see
that the complex displacement zi is actually canonically con-
jugate to �i=

�L
�żi

� i�iAijzj
�: the two-dimensional displace-

ments are both the coordinate and conjugate momenta and
hence there are only 2F eigenmodes in a spinor condensate.
Qualitatively, this is a situation reminiscent of a massless
particle in a magnetic field, where the x and y coordinates are
canonically conjugate coordinate and momentum. Indeed,
constructing real 4F dimensional representations of the sym-
metry would result in two duplicates of the spinor-
condensate’s eigenmodes. This duplicity will become evident
when the eigenmodes are written in terms of the complex
zi’s: half the normal modes will differ from the other half
through a complex multiplicative coefficient.

A. Spin-two cyclic state

As our first example, we consider the cyclic state which is
a possible mean-field ground state having the symmetry of a
tetrahedron for the spin-two problem. We will expand the
interaction energy to quadratic order about this mean-field
ground state to compute the energies of the normal excita-
tions. The spin-two interaction energy can be written in the
simple form28,29

Vint =
1

2
�m2 +

1

2
���
t�
	�2, �128�

where � and � are functions of the scattering lengths, and

m = �
�F�
	 . �129�

For the mean-field cyclic state, this spin-interaction energy

conveniently vanishes V̄int=0. In the following we will ex-
pand this energy to quadratic order.

We first construct the symmetry matrix A for the cyclic
state. We take the orientation where the spin nodes are at �in
Cartesian coordinates�

n1 =
1
�3

�1,1,1�, n2 =
1
�3

�− 1,− 1,1� , �130�

n3 =
1
�3

�1,− 1,− 1�, n4 =
1
�3

�− 1,1,− 1� . �131�

With the spin-half spinors corresponding to these spin nodes

the matrix Ā−1 can be directly constructed using the expres-
sion involving overlaps of time-reversed coherent states in
Eq. �101�. Using our gauge convention, this is found to be

Ā−1 =
1

64�
9 1 − 1 − 1

1 9 − 1 − 1

− 1 − 1 9 1

− 1 − 1 1 9
� . �132�

This then can be inverted to obtain

Ā =
2

3�
11 − 1 1 1

− 1 11 1 1

1 1 11 − 1

1 1 − 1 11
� . �133�

Recall that directly constructing the Ā matrix is cumbersome
since its elements involve Wick expansions having �2F�!
terms. The eigenvalues of this matrix are found to be

Eig�Ā�= ��̄1 , �̄2 , �̄3 , �̄4�= �8,8 ,8 , 16
3 �. This matrix can be

written in a revealing form as

Ā = 8I −
8

3
ū4ū4

†, �134�

where ū4= 1
2 �1,1 ,−1 ,−1�T is the eigenvector of Ā corre-

sponding to eigenvalue �̄4 and I is the identity matrix. An
eigenmode will necessarily diagonalize the A matrix as well
as the entire equations of motion and therefore we already
gleaned one eigenmode: ū4, which will turn out to be the
optical mode.

The three modes orthogonal to ū4 are associated with
SO�3� rotations. With this in mind, we construct these three
eigenmodes as the vectors arising from infinitesimal rota-
tions of ni about the Cartesian axes, x̂�. A rotation by angle
�� about the x̂� axis produces the following zi’s:

zi���� = ���x̂� � ni� · ei+ = i��ei+ · x̂�. �135�

Thus the eigenvectors ū� are

ū� =�3

8

ei+ · x̂��i=1

4 . �136�

It is now clear how to write the transformation into the
eigencoordinates defined generally in Eq. �125�
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zi = �
�

w��ū��i. �137�

Due to the high symmetry of the tetrahedron, these modes
are also degenerate. In general, the set of coordinate vectors
x̂� should be taken to be the principal axes of the mean-field
configuration.

Next we use this matrix to expand the interaction energy.
We first consider the linear order variation of the spin mo-
ment m. Note that since m=0 in the ground state we have
���F��	= ���FP��	. Then by inserting the identity for P
given in Eq. �109� one finds

�m =
1

2����	�ij �ei−Āijzj + zi
�Āije j+� . �138�

We now write the vectors ei+ in the basis of unit vectors
along the three Cartesian coordinates

ei+ = �
�=1

3

�ei+ · x̂��x̂� �139�

which immediately reduces them to the complex conjugate

of the degenerate eigenvectors ū� �with eigenvalue �̄=8�.
The fact that all of the eigenvalues are the same is due to the
high symmetry of the tetrahedral state. With this basis one
finds for the expansion of magnetization the simple expres-
sion

�m =
4

����	�i
�
�=1

3 �8

3
x̂���ū��i

�zi + �ū��izi
��

= �6�
�=1

3

x̂��w� + w�
�� , �140�

where we have expressed the final result in terms of the w
variables �defined in Eq. �137��. In deriving the above ex-
pression, we have explicitly used the values for the eigenval-
ues of the A matrix and the normalization constant �� ��	
= 8

3 . The three parameters of wi occurring in Eq. �140� corre-
spond to rotations about the three Cartesian axes as shown in
Fig. 3.

Similar analysis can be performed on the second term in
the spin interaction for the cyclic state. Without showing the
details, it is found that

��
t�
	 = 2�2w4. �141�

With these expressions we can now write down the spin-
interaction energy expanded to quadratic order which reads

����	Vs = ��
i=1

3

�̄i�wi + wi
��2 + 2��̄4�w4�2. �142�

With this expansion of the interaction, Eq. �127� can be di-
rectly used to compute the energy of the normal excitations.
Four Bogoliubov modes �note we are neglecting the density
mode� are readily obtained. One finds three gapless spin
waves of dispersion Ek

s =��k��k+4�� in addition to an optical
mode having dispersion Ek

op=�k+2� �where �k is the free
particle dispersion�.

Quite generally, the eigenvectors of the matrix Ā yield the
displacements of the z variables corresponding to each of the
eigenmodes �see, e.g., Eq. �135��. In case of degeneracy, it is
the interaction terms, discussed in Sec. VII B 1, that deter-
mine the correct diagonalization of the degenerate subspace
in the matrix A. In the case of the cyclic state, the first three
modes have displacements that correspond to rotations about
three orthogonal axes. The final mode z� ū4 corresponds to
the optical excitation discussed above and its displacements
are depicted in Fig. 3. This procedure simplifies the standard
Bogoliubov method39 considerably; we extract the eigen-
modes solely from the A matrix, which, as we show next, can
be obtained from symmetry considerations.

B. Spin-three hexagonal state

Let us now describe how to obtain the normal modes of a
spinor condensate by using symmetry arguments alone in a
more complicated setting. Once having the eigenmodes,
however, we must note that to obtain the energetics and dis-
persions of these modes, analysis of the microscopic Hamil-
tonian is still required. Our analysis uses group theoretical
arguments similar to those used to determine the vibrational
modes of polyatomic molecules.35,36 We illustrate the method
through the nontrivial example of the spin-three state having
the symmetry of the hexagon, which is a candidate for the
ground state of 52Cr condensates.30,31

The hexagon belongs to the point-symmetry group D6h
whose character table is given in Table I. In this table we use
the standardized notation for the symmetry operators and
irreducible representations.35 To every spin node, we attach
two displacement vectors parameterized by the real and
imaginary parts of the zi’s introduced previously. Such dis-
placement vectors are always parallel to the surface of the
sphere. We can construct matrices Mi which describe how
this set of 2 ·2F=4F vectors transform under each of the
symmetry operations. It is easy to then see that this set of

x

y

(a) (b)

(d)(c)

z

FIG. 3. �Color online� Normal modes of the cyclic state. Mode
�a� is the optical mode corresponding to pure displacements in w4.
Modes �b�, �c�, and �d� are gapless modes corresponding rotating
about the x, y, or z axes, respectively. The axes of rotation for these
modes are shown.
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matrices ��
Mi� form a �reducible� representation of the
symmetry group. While these large 4F�4F matrices are
cumbersome to write down, their characters �traces� can be
obtained by inspection. For instance, only spin nodes which
are mapped to themselves by a particular symmetry opera-
tion will contribute to the character of the matrix describing
this symmetry operation. The last row of Table. I gives the
characters of each of the matrices Mi forming �.

One can then invert the character matrix given in Table. I
to see how � can be decomposed into combinations of irre-
ducible representations. The result is

� = A2g + B2g + E1g + E2g + A2u + B2u + E1u + E2u.

�143�

In the typical notation35 A’s and B’s denote one-dimensional
irreducible representations while E’s denote two-dimensional
irreducible representations. The normal modes form the basis
of each of these irreducible representations.35 For two-
dimensional irreducible representations, there is some ambi-
guity in picking the two basis functions. For simplicity, we
picked the particular displacements which are all in plane or
all out of plane to form such bases. The 4F modes corre-
sponding to each of these representations is given in Fig. 4.
As usual, the modes corresponding to two-dimensional rep-
resentations are degenerate.

Once we know the irreducible representations involved,
we follow standard group theory, and construct projection
operators for the modes in these irreducible representations.
A general displacement of the spin nodes Q can be decom-
posed into a superposition of modes forming bases for each
irreducible representation as

Q = �
i

P��i�Q , �144�

where the operator P��i� projects into the irreducible repre-
sentation �i. Such projection operators can be written explic-
itly as

P��i� =
�i

h
�

g


��i��g�D�g� . �145�

Here, 
��i��g� is the character for the irredicuble representa-
tion �i corresponding to group element g, �i is the dimension
of the ith irreducible representation, and h are the number of
elements in the symmetry group; D�g� is the representation
of group element g in the spin-nodes displacement basis. For
the hexagonal state of the spin-three condensate, this projec-
tion confirms the eigenmodes depicted in Fig. 4.

As mentioned above, unlike molecular normal modes
where the atoms oscillate linearly about the equilibrium po-
sitions, the spin nodes will rotate along ellipses about the

TABLE I. The character table of the group D6h using the notation of Ref. 35. The last row gives the characters of the reducible
representation � constructed from transforming the displacement vectors of the hexagon �see text�.

D6h E 2C6 2C3 C2 3C2� 3C2� i 2S3 2S6 
h 3
d 3
v

A1g 1 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1

E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0

A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1

E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0

� 12 0 0 0 −4 0 0 0 0 0 0 0

E1g

ν5

E1g

ν6

E1u

ν7

E2g

ν9

E2g

ν10

E1u

ν8

E2u

ν12

E2u

ν11

ν1

A2g

ν2

A2u

ν3

B2g

ν4

B2u

+

+

+

−

− −

+

−+

−

−

−

+

+

−

−

−+

+−

+

+

+

+

+

+

+

+ +

−

−

−

FIG. 4. Normal modes for the hexagonal configuration of the
spin-three condensate. Vectors moving into and out of the plane are
denoted with “−” and “+,” respectively. By multiplying the set of
parameters 
zi� corresponding to these displacements by a factor of
i, one can identify �1=�2, �3=�4, �5=�7, �6=�8, �9=�11, and �10

=�12. The modes �1=�2, �5=�7, and �6=�8 correspond to Gold-
stone excitations due to the broken-spin symmetry while all other
modes are optical and gapped. The mode �10=�12 has a set of
displacement vectors with lengths differing by a factor of 2.
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equilibrium configuration. This allows us to cut the number
of modes given Fig. 4 in half. Specifically, by multiplying
the displacements 
zi� by the phase factor of i, we identify
�1=�2, �3=�4, �5=�7, �6=�8, �9=�11, and �10=�12. Because
of rotational invariance, the aspect ratio of the ellipses for the
three spin rotational Goldstone modes �1=�2, �5=�7, and
�6=�8 will be zero. Finally, we identify the three remaining
modes �3=�4, �9=�11, and �10=�12 with gapped optical
modes of the hexagonal spin-three condensate.

Thus, for this spin-three problem, by symmetry arguments
alone we have identified the 2F=6 spin modes �three of
which are Goldstone modes�. These modes along with den-
sity mode give the complete spectrum of normal modes for
the spin-three hexagonal condensate.

C. Connection to atomic-orbital theory and spherical
harmonics

The treatment above makes the construction of low-
energy eigenmodes of spinor-condensates geometrically in-
tuitive and illustrates how to directly use the machinery of
group theory. In addition, however, it is possible to make use
of the close relationship of the symmetry group and the un-
derlying full SO�3� rotational symmetry �such a connection
was explored in the context of equilibrium spinor conden-
sates in Ref. 33�. Once this connection is made, we will be
able to simply map the already well-developed theory of
crystal-field splittings of atomic orbitals to the problem of
eigenmodes of spinor condensates.

The connection between the z representation of small os-
cillations as in Sec. VIII A and spherical harmonics can be
deduced from the transformation rules of the vector zi under
the relevant point group. On the one hand, a symmetry op-
erator in the z representation, Dij�g�, will permute the entries
zi, as the symmetry operation g would the spin nodes. On the
other hand, each zi is a two-dimensional vector written in
terms of a complex number with respect to a particular basis
pair, ex ,ey, which are functions of the location of the spin
node n on the unit sphere. Therefore, the operator Dij�g� also
contains phase factors, ei�ij�g�, which serve to rotate the basis
vectors. So, in general, the structure of symmetry operators
in the z basis is

Dij�g� = Aij
�2F��g�ei�ij�g�, �146�

where Aij
�2F��g� is an element of the 2F permutation group

corresponding to a rotational symmetry of the spin nodes.
By exploiting the above transformation structure, we can

systematically construct bases of the symmetry group over
C2F from the bases of rotational symmetry, namely, spherical
harmonics, Ylm�� ,��. Let us mark the polar coordinates of
the spin node ni as �i, �i; from this set of coordinates, we can
produce a 2F-dimensional complex vector


Ylm��i,�i��i=1
2F .

It is easy to see that if we apply a rotational-symmetry op-
erator g of the spinor condensate on this vector, we have

�
m�

Rmm�
�l� �g�Ylm���i,�i� = �

j

Aij
�2F��g�Ylm�� j,� j� , �147�

where Aij
�2F��g� is the permutation operator from Eq. �146�.

The right-hand side of this equation indicates the rearrange-
ment of the spin nodes due to the symmetry operator. On the
other hand, the left-hand side comes from our knowledge of
the transformation rules for spherical harmonics, under rota-
tions: namely, l, the total angular momentum is invariant,
and the different azimuthal angular-momentum components
mix under the transformation.

To connect the spherical harmonics with the z representa-
tion, we need to construct a vector that will also transform
with the phase ei�ij�g�. This requires that in addition to evalu-
ating the spherical harmonics at the points ��i ,�i�, we need
to account for the phase factor when constructing the derived
bases in the z representation. This can be achieved by the
following notion: instead of looking at the value of Ylm�� ,��,
let us look at its derivative, which in our gauge convention
can be written as

�Ylm��,��
�z�

= � �

��
+ i

1

sin �

�

��
�Ylm��,�� . �148�

The denominator of the partial derivative �zi
� can be thought

of as a small deviation, �zi
�, from the mean-field spin node; it

obeys the complex conjugate of the transformation rule in
Eq. �146�, so its inverse transforms in the correct way, using
the phase ei�ij�g�. Therefore, we finally have the connection
between the symmetry of the spinor condensate and the rep-
resentations of SO�3�

�
m�

Rmm�
�l� �g�

�Ylm���i,�i�

�zi
� = �

j

Dij�g�
�Ylm�� j,� j�

�zj
� .

�149�

What we achieved by making this connection is a way of
constructing for each l�1 �l=0 gives identically zero� par-
tially reduced �albeit still reducible� representations of the
symmetry group at hand in terms of the z parametrization of
small deviations from equilibrium. Let us denote the vectors
we construct from Ylm as

ul,m = � �Ylm��i,�i�
�zi

� �
i=1

2F

. �150�

These vectors are the simplest building blocks for the vibra-
tional and rotational eigenvectors.

As an example, consider the l=1 states �p states� obtained
for the cyclic state of spin-two condensates. With the orien-
tation for the cyclic state given in Sec. VIII A, we obtain for
l=1 and m=0

u1,0 � 
ei+ · x̂3�i=1
4 � �1,1,1,1� �151�

which is the displacement vector for x3=z axis rotation, as in
Eq. �135�. For m= �1, as in atomic-orbital physics, it is
useful to construct the px and py combinations, which are
px,y �Y1,1�Y1,−1. For px we obtain
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u1,1 − u1,−1 � 
ei+ · x̂1�i=1
4 � 
1,− 1,− 1,1� �152�

which is the rotation about the x1=x axis �up to an overall
complex coefficient�. In the same fashion we find that the py
combination is

z1,1 + z1,−1 � 
ei+ · x̂2�i=1
4 � 
1,− 1,1,− 1� �153�

which is corresponds to rotation about the x2=y axis. To
obtain the last mode, which is the optical vibration mode
shown in Fig. 3, all we need is to find the vector of u which
is orthogonal to the above three.

The above analogy with atomic p orbitals is not acciden-
tal. Since we mapped vibrational modes to spherical harmon-
ics, we also mapped the z representation of spinor-
condensate fluctuations to the lm representation of atomic
orbitals. In atomic-orbital theory, we know that in the ab-
sence of rotational symmetry breaking all m states within the
same l is degenerate. But in the presence of a crystal field,
this degeneracy is lifted. The effect of crystal fields on
angular-momentum multiplets is very well documented �see,
e.g., Ref. 35�; we can now use this resource to directly find
the eigenmodes of the spinor condensates.

Let us demonstrate this principal again using the cyclic
state. We have already shown that the l=1 vibration modes
correspond to rotations. Let us now consider the l=2 states.
Under the effect of a tetrahedral crystal field the electronic
states split as

5d → �dxy,dxz,dyz

dz2,dx2−y2
� . �154�

Now we can map back these atomic states to spinor-
condensate oscillation modes. Starting with dxy �Y2,2−Y2,−2
we find

u2,2 − u2,−2 � 
1,1,1,1� �155�

which corresponds to uniform rotation about the z axis. Simi-
larly dxz�Y2,1−Y2,−1 and dyz�Y2,1+Y2,−1 correspond to rota-
tions about the y and x axis, respectively. The two remaining
orbitals are dz2 �Y2,0 and dx2−y2 �Y2,2+Y2,−2. Since there are
only four independent vectors, z, dz2, and dx2−y2 translate to
the same zlm vector

u2,0 � u2,2 + u2,−2 � 
1,1,− 1,− 1� �156�

which is exactly the optical mode shown in Fig. 3.

IX. CONCLUSIONS

One of the most striking and surprising features of spinor
condensates is the hidden symmetry of their mean-field
ground states. In this work, based on a spin-node description,
we have strived to bring this symmetry to the forefront, and
to make it into a tool in the study of the dynamics of these
fascinating systems.

In the first part of this work, we derived the hydrody-
namic equations of motion for condensates of general spin,
demonstrated their use in the computation of the skyrmion
configuration of a ferromagnetic spin-half gas, and general-
ized the Mermin-Ho relation to spin-one condensates.

In the second part of this work, we concentrated on small
oscillations of the spinor condensate in the vicinity of the
mean-field ground state. It is there that the hidden point-
group symmetry becomes most apparent and accessible. Us-
ing the spin-node formalism and the parametrization of the
spin nodes in terms of a stereographic projection, we reduced
the problem of finding the 2F spin-wave eigenmodes to a
simple question of decomposing a representation of the ap-
propriate point symmetry group to its irreducible representa-
tions. We also provided a simple recipe that allows the direct
extraction of the condensate’s spin-wave eigenmodes using
the derivatives of the spherical harmonics, coupled with the
knowledge of atomic-orbital degeneracy lifting under a crys-
tal field.

More than any specific result, this paper derives a new
formalism to address high-spin many-body systems. It is our
impression that, by far, we have not yet explored all possible
applications of this formalism. A simple example is the cal-
culation of the spin-wave eigenmodes and energies of a
spinor condensate which is locally at its ground state but
with its spin-nodes structure rotated as a function of space.
This can be done by combining the linearization of Sec. VII
with the general hydrodynamic description derived in Sec.
VI. Similarly, our method of expanding about a mean-field
ground state in terms of the z variables could be readily
applied to computing the leading instabilities in quantum-
quench experiments �as in, for instance, Ref. 17, where spin-
one quantum-quench experiments were performed�. The lin-
earized Lagrangian derived in Sec. VII C applies near any
extremum of the spin-interaction energy, Vint, even an un-
stable one. This can then be used to investigate the dynamics
for short-time scales after a quantum quench.

Another possible direction focuses on the form of the
spin-interaction energy Vint�n̂1 , n̂2 , . . . , n̂2F�, first defined in
Eq. �10�. In terms of the spin nodes, the spin-interaction
energy must be a permutation symmetric function of the spin
nodes. But the number of permutation symmetric scalars
constructed of the spin nodes n̂i is limited. All such scalars
must be constructed from tensors of the form

M�1�2. . .�n
= �

i=1

2F

ni,�1
ni,�2

. . . ni,�n
, �157�

where �k=x ,y ,z is the space direction. Examples are

�
i,j=1

2F

n̂i · n̂ j = �
i,j=1

2F

ni,�nj,� �
i,j=1

2F

ni,�ni,� · nj,�nj,� �158�

and so forth. This structure of the spin interaction may be
used to construct generic phenomenological theories for
spinor condensates and other high-spin many-body systems,
along the lines of the construction of Landau free energy.

The most interesting applications of the spin-node formal-
ism may arise when considering noncondensed spinor sys-
tems. Lattice insulators, both fermionic and bosonic, could
also be parametrized using spin nodes, and should exhibit
magnetic mean-field states with hidden point-group symme-
try as well. Similarly, we intend to consider spinor Fermi
liquids using this formalism; such systems may have inter-
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esting magnetic instabilities into states with the same hidden
symmetries as those arising in spinor condensates.

In the challenging field of many-body quantum systems,
often a new technical perspective on a problem may simplify
it dramatically. In this paper we developed a formalism that
seeks to do exactly that to the dynamics of spinor
condensates—a topic of much current experimental as well
as theoretical interest. Our analysis provides an economical
representation, which allows for a direct, general, and easy
calculation of many dynamic collective properties of spinor
condensates. In addition, we hope that the developments pre-
sented here could be used in other challenging problems in-
volving interacting quantum systems with high spin.
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APPENDIX A: NOTATION

In this Appendix, for convenience, we collect in one place
the notation used for the representation of the spinors. Nor-
malized spinors of arbitrary spin are denoted by �
	. Non-
normalized symmetric combinations of spin-half states are
denoted as �with bold fonts�

��	 = ��1�2 ¯ �2F	 . �A1�

This is then related to �
	 by

�
	 =
��	

�����	
. �A2�

Coherent spin states occur when all of the spin-half constitu-
ent spins point in the same direction. We denote these by

���i�2F	 = ��i�i ¯ �i	 . �A3�

We next define the spin state corresponding to ��	 with its
ith component time reversed. We denote these by

�Ti�	 = ��1�2 ¯ �i
t
¯ �2F	 . �A4�

Finally, we define the projection operator P to be

P = 1 − �
	�
� . �A5�

APPENDIX B: THE SPINOR BASIS {
Ti�‹} AND THE
MATRIX A

In this Appendix, we will develop derive identities used
for the projection operator P=1− �
	�
� and the symmetry
matrix A. Consider a particular spinor

��	 = ��1�2 ¯ �2F	 , �B1�

where none of the spin nodes are degenerate. Then from this
we can construct a set of 2F states where one of the elements
of ��	 is time reversed 
�Ti�	�. Furthermore, we construct
the set of 2F coherent states which are orthogonal to ��	
which are 
���i

t�2F	�. We note that these two sets of states
satisfy reciprocal relations

�Ti���� j
t�2F	 = �i�ij , �B2�

where

�i = �2F� ! �
j�i

�� j��i
t	 . �B3�

This relation leads to a useful identity for the projection op-
erator

P = �
i

���i
t�2F	�Ti��

�i
P . �B4�

This relation can be immediately proved by expanding any
state acting on the right in a basis of states 
���i

t�2F	�, and
any state acting on the left in a basis of states 
�Ti�	� �both
which, in addition to the state ��	, form a complete basis of
spinor states when the spin nodes are nondegenerate�.

Using these states, we will now proceed to derive an ex-
pression for the inverse of the matrix Aij = �Ti��P�Tj�	
which exists when none of the spin nodes ni are degenerate.
We define B to be the matrix of the overlap of time-reversed
coherent states �which will be shown to be the inverse of A�

Bij =
���i

t�2F��� j
t�2F	

�i
�� j

. �B5�

Consider the product of these matrices

�
j

BijAjk = �
j

���i
t�2F��� j

t�2F	
�i

�� j

�Tj��P�Tk�	 . �B6�

We can then use the identity in Eq. �B4� to collapse the sum
over j. This leads to

�
j

BijAjk =
���i

t�2F�Tk�	
�i

� = �ik �B7�

and the proof is complete.

GEOMETRICAL APPROACH TO HYDRODYNAMICS AND… PHYSICAL REVIEW B 80, 024420 �2009�

024420-19



1 F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel,
J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87, 080403
�2001�.

2 Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwi-
erlein, A. Gorlitz, and W. Ketterle, Phys. Rev. Lett. 88, 160401
�2002�.

3 G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Phys. Rev.
Lett. 89, 150403 �2002�.

4 J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. J. Miesner, A. P.
Chikkatur, and W. Ketterle, Nature �London� 396, 345 �1998�.

5 H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van
Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock,
Phys. Rev. Lett. 92, 040402 �2004�.

6 M. S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M.
Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett.
92, 140403 �2004�.

7 A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Phys. Rev. Lett. 94, 160401 �2005�.

8 T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 �1998�.
9 T. L. Ho, Phys. Rev. Lett. 81, 742 �1998�.

10 M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. S. De,
and U. Sen, Adv. Phys. 56, 243 �2007�.

11 S. Powell and S. Sachdev, Phys. Rev. A 76, 033612 �2007�.
12 R. Kanamoto, L. D. Carr, and M. Ueda, Phys. Rev. Lett. 100,

060401 �2008�.
13 Y. Kawaguchi, M. Nitta, and M. Ueda, Phys. Rev. Lett. 100,

180403 �2008�.
14 M. Taillefumier, E. Dahl, A. Brataasand, and W. Hofstetter,

arXiv:0901.1969 �unpublished�.
15 A. Widera, F. Gerbier, S. Folling, T. Gericke, O. Mandel, and I.

Bloch, Phys. Rev. Lett. 95, 190405 �2005�.
16 F. Gerbier, A. Widera, S. Folling, O. Mandel, and I. Bloch, Phys.

Rev. A 73, 041602�R� �2006�.
17 L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D.

M. Stamper-Kurn, Nature �London� 443, 312 �2006�.
18 S. R. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Co-

hen, and D. M. Stamper-Kurn, Phys. Rev. A 79, 043631 �2009�.
19 M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-

Kurn, Phys. Rev. Lett. 100, 170403 �2008�.
20 M. Vengalattore, J. Guzman, S. Leslie, F. Serwane, and D. M.

Stamper-Kurn, arXiv:0901.3800 �unpublished�.
21 H. Saito, Y. Kawaguchi, and M. Ueda, Phys. Rev. A 76, 043613

�2007�.
22 A. Lamacraft, Phys. Rev. Lett. 98, 160404 �2007�.
23 M. Uhlmann, R. Schützhold, and U. R. Fischer, Phys. Rev. Lett.

99, 120407 �2007�.
24 Bogdan Damski and Wojciech H. Zurek, Phys. Rev. Lett. 99,

130402 �2007�.
25 Subroto Mukerjee, Cenke Xu, and J. E. Moore, Phys. Rev. B 76,

104519 �2007�.
26 G. I. Mias, N. R. Cooper, and S. M. Girvin, Phys. Rev. A 77,

023616 �2008�.
27 R. W. Cherng, V. Gritsev, D. M. Stamper-Kurn, and E. Demler,

Phys. Rev. Lett. 100, 180404 �2008�.
28 C. V. Ciobanu, S. K. Yip, and T. L. Ho, Phys. Rev. A 61, 033607

�2000�.
29 M. Ueda and M. Koashi, Phys. Rev. A 65, 063602 �2002�.
30 R. B. Diener and T.-L. Ho, Phys. Rev. Lett. 96, 190405 �2006�.
31 L. Santos and T. Pfau, Phys. Rev. Lett. 96, 190404 �2006�.
32 R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97,

180412 �2006�.
33 S.-K. Yip, Phys. Rev. A 75, 023625 �2007�.
34 H. Makela and K.-A. Suominen, Phys. Rev. Lett. 99, 190408

�2007�.
35 F. A. Cotton, Chemical Applications of Group Theory �Wiley,

New York, 1990�.
36 G. Herzberg, Molecular Spectra and Molecular Structure �Van

Nostrand, New York, 1945�, Vol. II.
37 A. Lamacraft, Phys. Rev. A 77, 063622 �2008�.
38 N. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 �1976�.
39 C. J. Pethick and H. Smith, Bose-Einstein Condensation in Di-

lute Gases �Cambridge University Press, Cambridge, 2002�.
40 T. Mizushima, K. Machida, and T. Kita, Phys. Rev. Lett. 89,

030401 �2002�.
41 E. J. Mueller, Phys. Rev. A 69, 033606 �2004�.
42 T. Mizushima, N. Kobayashi, and K. Machida, Phys. Rev. A 70,

043613 �2004�.
43 M. Stone, Phys. Rev. B 53, 16573 �1996�.
44 The case for where there are degeneracies in the solutions of Eq.

�12� is treated thoroughly in Sec. III B.
45 E. Majorana, Nuovo Cimento 9, 43 �1932�.
46 J. Schwinger, in Quantum Theory of Angular Momentum, edited

by L. Biedenharn and H. Van Dam �Academic, New York,
1994�.

47 A. Auerbach, Interacting Electrons and Quantum Magnetism
�Springer, New York, 1994�.

48 R. Barnett, A. Turner, and E. Demler, Phys. Rev. A 76, 013605
�2007�.

49 R. Rajaraman, Solitons and Instantons �North-Holland, Amster-
dam, 1982�.

50 R. Kamien, Rev. Mod. Phys. 74, 953 �2002�.
51 U. A. Khawaja and H. Stoof, Nature �London� 411, 918 �2001�.
52 C. Bouchiat and G. W. Gibbons, J. Phys. 49, 187 �1988�.
53 J. H. Hannay, J. Phys. A 31, L53 �1998�.

BARNETT, PODOLSKY, AND REFAEL PHYSICAL REVIEW B 80, 024420 �2009�

024420-20


